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Abstract 

On the basis of the axioms assumed it is proved that the logic of propositions concerning 
any quantum-mechanical system may be endowed with the structure of an orthomodular 
atomistic complete lattice satisfying the covering postulate, and hence, as a consequence 
of these axioms, the Piron-MacLaxen representation theorem for the logic is obtained. 

1. Introduction 

In our paper we come back to the old problem of  giving a justification for 
the Hilbert-space description of  quantum phenomena, Among many attempts 
to solve this problem the so-called "quantum-logic" approach seems to be very 
appropriate. Its main result is the well-known Piron-MacLaren representation 
theorem for the quantum logic (see Piton, 1964; MacLaren, 1964, 1965; also 
Varadarajan, 1968; Maeda and Maeda, 1970). 

The axiom system presented here belongs to the "quantum logic" class and 
is interesting in the following two respects. Firstly, the complete lattice prop- 
erty of  the logic is now a consequence of  the axioms and not a postulate, and 
secondly, the covering postulate is formulated here in terms of  atoms (pure 
states) only, and admits a simple interpretation. 

2. Ax ioms  and Their Consequences 

The set of  all experimentally verifiable propositions (questions, yes-no 
measurements) concerning a given physical system, called the logic of the 
system, we denote by L, and the set of  states of  the system by S. 
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The following two postulates are placed in a common origin of  all "logical" 
approaches to quantum axiomatics and seem to be unquestionable: 

Ax iom 1. L is an orthomodular o-orthoposet. 
Ax iom 2. The set S of  states is a e-convex subset of  the set of  all 
probability measures on L. 

Also the following postulate seems to be natural (it was assumed, e.g., by 
Mackey, 1963): 

Axiom 3. For every nonzero proposition a E L there exists a state 
m c S with re(a) = 1. 

The next axiom (compare Bugajska and Bugajski, 1972, Axiom 5) may be 
easily understood, if the partial ordering ~< is interpreted as the implication 
between propositions. 

A x i o m  4. If  re(a) = m(b) = 1 for some m E S and a, b ~ L, then there 
exists a proposition c ~< a, b such that re(c) = 1. 

We assume, additionally, the separability o f  the logic (see, for example, 
Zierler, 1961 ; Gunson, 1967): 

Axiom 5. The logic L is separable, that is, every subset of  mutually 
orthogonal propositions from L is at most countable. 

Definition. A proposition a @ L is said to be the carrier of  a given state 
m E S (see Zierler, 1961 ; Pool, 1968), i fa  is the smallest element in the set 
{b E L: re(b) = 1 ). 

The carrier of  m, whenever it exists, is obviously unique and we denote it 
by cart m. 

One can show the following consequences of  Axioms 1-5 (for proofs, see 
Bugajska and Bugajski, 1972): 

2.1. Every state m ~ S has the carrier. 
2.2. If  m = Nitimi, where i runs over an at most countable set o f  indices, 

ti > O, Ni ti = 1, then carr m = Vi carr mi. 
2.3. For each nonzero proposition a E L there exists a state m E S such 

that a = carr m. 
2.4. The logic L is a lattice. 

Moreover, one can easily show that 
2.5. The logic L is a complete lattice. 
Proof  Using 2.1-2.3 one can show (in exactly the same manner as the 

statement 2.4 was shown in the paper of  Bugajska and Bugajski, 1972) that L 
is o-complete. The completeness o f  L is then a consequence of  the following 
fact (compare Varadarajan, 1968, pp. t 83- i  84): Every separable o-complete 
orthomodular lattice L is complete. 

Let now K _~ L, T -  ~ S a n d / =  0 or 1. The following abbreviations will be 
used throughout this paper: 
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K ] = (m E S: re(a) = ] for all a E K} 

U = (a E L: m(a) = j for all m ~ T) 

If  the set K consists of  one point only,  say K = {q}, then we write a ] instead 
of (a~ j. Analogously, we write rn I instead o f  (my. 

Definition. The proposition a ~ L is said to be the carrier of  a given set 
T c S (T 4= 0), if a is the smallest element in T 1. 

From the definition above it follows easily that the carrier of  T, whenever 
it exists, is unique; we denote it by carr 7". 

2.6. Let T be an arbitrary nonempty subset of S. Then there exists carr T, 
and carr T = Vm~ T carr m. 

Proof. To show that Vrn~T carr m = cart T, suppose a E T 1. Then a/> cart 
m for all m E T, hence a ~> V m e T  carr m. Furthermore, m ( V m ~ T  carr m) = 1 
for every m E T implies Vm ~ T carr m E T 1, which completes the proof  of  the 
statement. 

Let U and T be two nonempty subsets of  S such that U -~ T. Denote 

T(U):= ( m @ T : U  1 - ~ m  1} 

2.7. Let 0 @ U --- T --- S. Then T(U) = (carr U) 1 r-/T. 
Proof. To prove the inclusion (carr U) t ¢1 T c T(U) assume that m E (cart 

U) 1 r~ T, and let a E U 1 (a E L). Then obviously carr U~< a, hence re(a) 
re(cart U) = 1, which implies a E m 1. Thus we have shown that m ~ T(U). 

To show the inverse inclusion, let m E T(U). Then cart U E  U 1 - m 1, 
which implies m ~ (carr U) 1 r3 T. This completes the proof  of  the statement. 

Let T be a fixed but arbitrary nonempty subset of  the set S of all states of  
the system. The following can then easily be verified: 

2.8. The operation U---> T(U) defined in the family of  all nonempty subsets 
of T has the following properties: 

O) U c T(U) for each U ~ T 
(ii) T(U1) ~- T(U2) whenever (Jl c U2 

(iii) T(T(U)) = T(U) for every U. 

In other words, the mapping U -+ T(U)is a kind of  closure operation in the 
sense of  Moore and Birkhoff, and therefore (see Birkhoff, t 948) the foUowing 
holds: 

2.9. Under set inclusion, the family C(T) of all closed subsets of  T [that 
is, such subsets of  T, for which U = T(U)] becomes a complete lattice whose 
join and meet operations are given by 

V U ] = T [ U U i ~  and A U i =  n u ]  
j \ i  J J 

(~Ui) being an arbitrary family of  closed subsets of  the set T). 
The family C(T) may be completed by adjoining to it the empty set 0. 

We then put, by the definition, T(~) :-- ~. 
Let now T be an arbitrary nonempty subset of  S. The following can easily 

be shown: 
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2.10. For every a E L the set a t n Tis  closed, and a ~< b (a, b E L) implies 
a 1 N T _  ~ b 1 n T. Moreover, the map a ~ a  ~ n T E  C(T) is a surjection. 

Proof. One can assume without any loss of generality that a s n T 4: 0. Let 
m E T(a I N T); since a E (a I n T) 1 ~ m 1, we have m E a  I N T. This shows 
that T(a I N T) = a 1 n T. 

The implication a < b =~a 1 N T ~  b 1 N T i s  obvious. By 2.7, for every non- 
empty U--- Twi th  T(U) = Uone  has U = a 1 n T, where a = carr U, which 
(together with 0 = 01 n T) proves that the map a -+ a 1 n Tis  a surjection. 

2.11. a 1~  _ b1(a, b E L ) i m p f i e s a < , b .  
Proof  It can be assumed without any loss of generality that a 4=- 0. Then, 

by 2.3, a = carr m for some m E S. But m E (carr m) 1 = a 1 ~ b I implies re(b) = 
1, hence b ~> carr m = a. 

2.12. For every nonzero proposition a E L one has a = cart a 1. 
Proof  As a E (al)  1, it remains to be shown that a < b for all b E (al)  1. But 

b E (al) 1 implies a 1 ___ b 1, hence a <~ b by 2.11. 
2.13. Theorem. Let Tbe  a subset of S satisfying the following condition: 

(*) for each nonzero a E L the set a a N T i s  nonempty.  Then the mapping 
a -+ a 1 N T is an order isomorphism between L and C(T); the inverse isomorph- 
ism [from C(T)  to L] is given by the mapping U-+ cart U (for 0 we put, by 
the definition, carr 0 := 0). 

The proof of Theorem 2.13 will be divided into a series of lemmas (Lemmas 
2.14-2.16) below; T is always a fixed subset of S possessing the property (*). 

2.14. Lemma. For every nonzero proposition a E L we have a = carr (a ~ N 7). 
Proof. By 2.12 we get a = carr a t. Since a 1 ~ a a n T, one has a = carr a ~ ~> 

carr (a I G T). Suppose that a > cart (a 1 n T). Then, by the orthomodularity 
of  L, there exists b ~ 0 such that b I cart (a 1 N T) and a = b V carr (a 1 n T). 
By (*) there exists a state m E T with m(b) = 1, hence also m(a) = 1, that is 
m E a  1 N T, which implies carr m ~< carr(a a N T). Hence m[carr(a 1 N T)] = 1, 
which implies re(a) = m(b) + m [carr(a 1 n T)] = 2, a contradiction. 

2.15. Lemma. For every set W E S including T as a subset one has a ~ N W= 
W(a 1 A T ) .  

Proof. One can assume without any loss of generality that a 4: 0. Then, by 
2.7 and 2.14 one gets 

W(a I n T) = [carr(a I n T)] 1 N W =a 1 n W 

Putting a = I in 2.15 one obtains the following: 
2.16. Lemma. If the conditions of the preceding lemma are satisfied, then 

W = W(T), that is, T is "dense" in W. 
2.17. Lemma. a 1 n T ~ _ b I n T(a, b E L )  implies a <~ b. 
Proof. a 1 n T~_b t n Tleads t oS (a  1 n T)~_S(b  I n T),hence (see 2.15) 

a I _~ b 1, which implies a ~< b by 2.11. 
Lemmas 2.14-2.17 prove our theorem 2.13. 
Definition. We say that two states ml, m2 E S are orthogonal and write 

rn 1 ± me, if ml(a ) = 1 and mz(a ) = 0 for some proposition a EL, 
This orthogonality relation is obviously symmetric, that is m 1 ± mz implies 

m2 ± m 1. 
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Now let Tbe a subset of  S satisfying the condition (*) and let I denotes the 
orthogonality in S restricted to the set T. For each U --- T define U ± to be the 
set o f  all states m E Tsuch that m ± U (read: m I m 1 for all m 1 @ U) and write 
U-instead of  U -~. Obviously, U ~ U -  If U = U ,  we call the set Uorthoclosed. 
The family o f  all orthoclosed subsets of  Twill be denoted by C(T, ±); the map 
U -+ U-  (U - T) is, obviously, a closure operation in the sense of  Moore and 
Birkhoff, hence (see Birkhoff, 1948, Chap. IV, Theorem 1 )~ander set inclusion 
C(T, 1) becomes a complete lattice with joins and meets defined by 

(y) V U ] =  U/. and A U ] =  flU] 
/" ] 1" 

({Ui} being an arbitrary family o f  orthoclosed subsets of  T). Moreover, it can 
also easily be seen that U -~ U is an orthocomplementation in C(T, ±). 

We shall now show that C(T, 1) = C(T). This is a consequence of  the 
following statement: 

2.18. For each subset U -  c Tone  has U ±= (cart U) '1 C~ Tand U -= T(U). 
(For the empty set 0 we put by definition 0 k := T). 

Proof Case I." U ± = 0- We shall show that cart U = 1. Indeed, suppose that 
there exists a ~ Ul,a ~ 1. Since a '  4: 0, there exists, by (*), a state m E S with 
m(a') = 1, hence m(a) = 0. Thus m E U l, which contradicts the assumption. 

Case ii. U ± ¢ O. Let m ~ U a. Then carr m 1 cart m I for all m 1 E U, hence 
cart m ± Vm a cart ml = cart U (see 2.6), hence m(carr U) = 0, that is 
m E (cart U~ '1 u C~T. 

Conversely, m E (cart U) 't (1 T implies m(Vml ~_ g carr ml) = re(cart U) = 0, 
hence re(cart ml) = 0 for all ml E U, which implies carr m I carr m 1 for all 
m 1 ~ Ui Hence m I m I for every rn 1 E U, that is m E U I. 

Thus the equality U ± = (carr U) '1 N T i s  proved. To show the second part 
of  the statement note that owing to its first part we get 

U-" = (Ul)  ± = (cart U±) '1 63 T 

= [carr((carr U) 'a A T)] '~ N T 

= [(carr U)'] q c / T  by 2.14 

= ( c a r r U )  t N T  

= T(U) by 2.7. 

This completes the proof o f  the statement. 
2.19. Theorem. If  a subset T --~ S satisfies the condition (*), then the order 

isomorphism between L and C(T, 1) = C(T) defined by 

a ~ a  1 C~T, a E L  

is actually an orthoisomorphism. The orthoisomorphism inverse to the above 
one is defined by 

M-+ carr M, M E C(T, i )  
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Proof. It would be shown that the mapping a -÷  a 1 N T preserves the ortho- 
complementat ion.  One can assume without any loss o f  generality that a 4: 0. 
By 2.14 and 2.18 one then gets 

a '1 N T = [carr(a 1 C~ T)]  ,1 rq T = (a 1 c~ T) ± 

which proves the theorem. 
Since the set S of all states o f  the system satisfies, by the assumption (see 

Axiom 3), the proper ty  (*), as an immediated consequence o f  Theorem 2.19 
one obtains the following: 

2.20. Theorem. The mapping a -+ a 1, a ~ L, defines an or thoisomorphism 
of  L onto C(S, ±); the or thoisomorphism inverse to the above one is defined 
by  

M-+ carr M, M E C(S, ±) 

Assume now, as an additional postulate,  the following (see, e.g., Mac Laren, 
1965): 

Axiom 3'. For every nonzero proposit ion a E L there exists a pure 
state p such that p(a) = 1. 

Then, as a direct consequence of  Theorem 2.19 we obtain the following: 
2.21. Theorem. For any set T _ S including the set P of  pure states as a 

subset the mapping 

a-+a 1 n T, a E L  

defines an orthoisomorphism of  L onto C(T, ±); the orthoisomorphism 
inverse to the above one is defined by  

M-+ carr M, MEC(T,±)  

Remark. For particular cases, when T = S or T = P, the theorems similar 
to 2.20 and 2.21 have been proved by  Bugajska and Bugajski (1973a) under 
another axiom system. 

Axiom 6. For each pure state p E P o n e  has ( p ) - =  {p). 

This axiom expresses the physically obvious fact that a single pure state cannot 
produce any superposit ion (see Bugajska and Bugajski, 1973a; Guz,, 1974). 

2.22. Theorem. The ortholatt ice C(P, ±) is atomist ic  and the mapping 
p -~ cart p, where p E P, establishes a one-to-one correspondence between pure 
states and atoms of  the logic L. 

Proof Atomist ici ty  o f  C(P, ±) is a direct consequence of  Axiom 6. The proof  
of  the second part o f  the theorem is, in principle, the same as the p roof  of  
Lemma 2.9 o f  Guz (1974). We close our axiom system by formulating the 
following two axioms: 

Axiom 7. L is irreducible. 
Axiom 8. Given four atoms e 1, e2, e3, e such that e ~ e 1 V e 2 and 
e < e 1 V e 2 V e 3, e 4: e3, then there exists an a tom f s u c h  that  
f~< e 1 V e  2 a n d r e <  e V e  3. 
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Note that Axiom 7 is not restrictive. If  it does not hold, then any irreducible 
part of  the whole logic may be taken as L. 

Axiom 8 is equivalent to the covering postulate (for the formulation of  the 
latter see, for example, Mac Laren, 1964, or Maeda, 1970). The equivalence 
may be proved in an exactly the same way as Theorem (S) of  Bugajska and 
Bugajski (1973b). 

In order to understand the meaning of  Axiom 8 two cases should be con- 
sidered. 

Case (a): el = e2. Then f =  e 1 and Axiom 8 reduces to the following: 
e ~< e 1 V e 3, e 4= % e 3 imply e I ~< e V e 3. This property seems to be obvious-  
see Figure 1. 

7. • 0 
e e I e~ 

Figure  1. 

el V ea = e  V e a 
ul 

Case (b): e 1 4= e2. As e 4; e 1 V e 2 and e ~< et V e 2 V e3, we have e 3 ~ e 1 V e2, 
and the situation that now appears is shown in Figure 2. In other words, two 
distinct lines have always a common point. (Remark: When the lines e 1 V e2 
and e V e 3 are parallel,f becomes the point at infinity.) 

Figure  2. 

3. Conclusion 

To obtain the standard representation theorem for the logic L (see Piron, 
1964; Mac Laren, 1965; Varadarajan, 1968; also Zierler, 1961) it now suffices 
to appeal to the following theorem (see Mac karen, 1964; also Maeda, 1970): 

Theorem. Let L be an irreducible atomistic complete orthocomplemented 
lattice o f  length ~> 4 with the covering property holding in it. Then there exists 
a division ring D with an involutive antiautomorphism *, a vector space V over 
D, and a definite (nondegenerate) *-bilinear form ( . ,  .) on V such that L is 
orthoisomorphic to the ortholattice o f  all ( . ,  .)-closed linear manifolds in V. 
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